Does Demography Change Wealth Inequality?

Miguel Sánchez-Romero*, Stefan Wrzaczek*, Alexia Prskawetz*, and Gustav Feichtinger*

* Wittgenstein Centre (IIASA, VID/ÖAW, WU), Vienna Institute of Demography/Austrian Academy of Sciences and Vienna University of Technology (TU Wien)

12th Global Meeting of the NTA Network, Mexico City, July 23-27

Motivation

• Understanding to what extent demography (fertility and mortality) may influence wealth inequality

- Understanding to what extent demography (fertility and mortality) may influence wealth inequality
 - Existing models are based on unrealistic demographic assumptions

- Understanding to what extent demography (fertility and mortality) may influence wealth inequality
 - Existing models are based on unrealistic demographic assumptions
- Objective
 - Building an economic model with realistic demography and to analyze the influence of demography on wealth inequality

- Understanding to what extent demography (fertility and mortality) may influence wealth inequality
 - Existing models are based on unrealistic demographic assumptions
- Objective:
 - Building an economic model with realistic demography and to analyze the influence of demography on wealth inequality
 - The model must:
 - Be able to explain the increasing heterogeneity between cohorts
 - Be able to explain the increasing heterogeneity within cohorts

- Understanding to what extent demography (fertility and mortality) may influence wealth inequality
 - Existing models are based on unrealistic demographic assumptions
- Objective:
 - Building an economic model with realistic demography and to analyze the influence of demography on wealth inequality
 - The model must:
 - be able to explain the increasing heterogeneity between cohorts \rightarrow life cycle saving behavior
 - be able to explain the increasing heterogeneity within cohorts

Motivation

- Understanding to what extent demography (fertility and mortality) may influence wealth inequality
 - Existing models are based on unrealistic demographic assumptions

Objective:

- Building an economic model with realistic demography and to analyze the influence of demography on wealth inequality
- The model must:
 - be able to explain the increasing heterogeneity between cohorts \rightarrow life cycle saving behavior
 - be able to explain the increasing heterogeneity within cohorts \rightarrow Intergenerational wealth transfers (i.e., bequests)

Heterogeneity within cohort:

Generational gap (I) \Rightarrow Age difference between the parent and the child

• Heterogeneity within cohort:

Generational gap (I) \Rightarrow Age difference between the parent and the child

• Demography:

Modeling the population dynamic processes realistically

Fertility rates:	m(x)	
Mortality rates:	$\mu(x)$	
Survival prob.:	$S(x) = \exp\left\{-\int_0^x \mu(a)da\right\}$	
Dyn. cohort size:	$\int N(0,l) = m(l) \int_0^\omega N(l,\ell) d\ell$	(births)
	$\int \frac{\partial N(x,l)}{\partial x} = -\mu(x)N(x,l)$	(deaths)

• Household saving behavior → Linking parents with children

• Surviving children/heirs
$$n(x) = \int_0^x S(x-l)m(l)dl$$
,
• Household size (consumers) $h(x) = 1 + \int_{x-A}^x S(x-l)m(l)\delta(x-l)\frac{S(l)}{S(x)}dl$,

where A is the age at leaving the household and $\delta(x)$ is the adult EAC units at age x

• Household saving behavior → Linking parents with children

• Surviving children/heirs
$$n(x) = \int_0^x S(x-l)m(l)dl,$$

• Household size (consumers)
$$h(x) = 1 + \int_{x-A}^x S(x-l)m(l)\delta(x-l)\frac{S(l)}{S(x)}dl,$$

where A is the age at leaving the household and $\delta(x)$ is the adult EAC units at age x

- Transmission of wealth \rightarrow heirs at age $x \sim \text{Pois}(\lambda = n(x))$
 - Prob. of no children $\theta(x) = \exp\{-n(x)\},$ • Fraction of wealth $\eta(x) = \frac{1 - \theta(x)}{n(x)},$ figure

Life Cycle Savings/Wealth inequality

Accumulation of wealth over the life cycle

$$\frac{\partial k(x,l)}{\partial x} = \begin{cases} [r+\theta(x)\mu(x)]k(x,l) + B(x,l) & \text{for } x < A, \\ [r+\theta(x)\mu(x)]k(x,l) + B(x,l) + y(x) - c(x,l) & \text{for } A \le x < \omega. \end{cases}$$
(1)

Boundary conditions

$$k(0, l) = 0$$
 and $k(\omega, l) = 0,$ (2)

where

r interest rate

- A first age at making decisions
- ω maximum longevity
- y(x) labor income (taken from the NTA database)
- c(x, l) household consumption

Life Cycle Savings/Wealth inequality

Accumulation of wealth over the life cycle

$$\frac{\partial k(x,l)}{\partial x} = \begin{cases} [r+\theta(x)\mu(x)]k(x,l) + B(x,l) & \text{for } x < A, \\ [r+\theta(x)\mu(x)]k(x,l) + B(x,l) + y(x) - c(x,l) & \text{for } A \le x < \omega. \end{cases}$$
(1)

Boundary conditions

$$k(0, l) = 0$$
 and $k(\omega, l) = 0,$ (2)

where

rinterest rateAfirst age at making decisions ω maximum longevityy(x)labor income (taken from the NTA database)c(x, I)household consumption

Expected bequest received

$$B(x, l) = \underbrace{\mu(x+l)}_{\text{Prob. of dying}} \underbrace{\frac{S(x+l)}{S(l)}}_{\text{Capital received}} \underbrace{\frac{k(x+l)\eta(x+l)}{(x+l)\eta(x+l)}}_{\text{Capital received}}$$
(3)

Life Cycle Savings/Wealth inequality

Accumulation of wealth over the life cycle

$$\frac{\partial k(x,l)}{\partial x} = \begin{cases} [r+\theta(x)\mu(x)]k(x,l) + B(x,l) & \text{for } x < A, \\ [r+\theta(x)\mu(x)]k(x,l) + B(x,l) + y(x) - c(x,l) & \text{for } A \le x < \omega. \end{cases}$$
(1)

Boundary conditions

$$k(0, l) = 0 \text{ and } k(\omega, l) = 0,$$
 (2)

where

 $\begin{array}{ll} r & \text{interest rate} \\ A & \text{first age at making decisions} \\ \omega & \text{maximum longevity} \\ y(x) & \text{labor income (taken from the NTA database)} \\ c(x, l) & \text{household consumption} \end{array}$

Expected bequest received (within cohort heterogeneity) Example

$$B(x, l) = \underbrace{\mu(x+l)}_{\text{Prob. of dying}} \underbrace{\frac{S(x+l)}{S(l)}}_{\text{Capital received}} \underbrace{\frac{k(x+l)\eta(x+l)}{Capital received}},$$
(3)

Figure 1: Per capita bequest given (dashed) and received (solid) by generational gap

Notes: Units relative to the average labor income ages 30 to 49. Both bequest profiles are derived using an annual interest rate of 3 percent, and fertility and mortality rates with an average TFR of 2.5 and a life expectancy of 65 years.

Optimal decisions: Preferences

 Assuming no subjective discounting, the expected utility of a household head born in year τ, whose parent is I years older (generational gap), is

$$EU(c) = \int_{A}^{\omega} \frac{S(x,\tau)}{S(A,\tau)} \left\{ U\left(\frac{c(x,\tau,l)}{h(x,\tau)}\right) + \alpha \mu(x,\tau) U\left(\eta(x,\tau)k(x,\tau,l)\right) \right\} dx.$$
(4)

where

- $\begin{array}{ll} U(.) & \mbox{Isoelastic functions } U \mbox{ (that satisfy the Inada conditions:} \\ U' > 0, \ U'' < 0, \ \mbox{with } U \mbox{ being continuously differentiable,} \\ U'(0) = \infty, \ \mbox{and } U'(\infty) = 0) \end{array}$
- $\alpha \ge 0$ Degree of altruism towards children
- $\eta(x,\tau)k(x,\tau,I)$ Amount of wealth bequeathed to each offspring
- $\frac{S(x,\tau)}{S(A,\tau)}\mu(x,\tau)$ The expected age at which the bequest is given

Figure 2: Labor income per capita in USA, 2003

Source: www.ntaccounts.org.

Figure 3: Wealth profiles for two different birth cohorts back

Impact of alternative life expectancies (LE) and total fertility rates (TFR)

Impact of alternative life expectancies (LE) and total fertility rates (TFR)

• Measuring wealth inequality

Impact of alternative life expectancies (LE) and total fertility rates (TFR)

• Measuring wealth inequality

• within birth cohorts:
$$c_C[\mathbf{k}(x)] = \frac{\sqrt{V_C[\mathbf{k}(x)]}}{E_C[\mathbf{k}(x)]}$$

Impact of alternative life expectancies (LE) and total fertility rates (TFR)

• Measuring wealth inequality

• within birth cohorts:
$$c_C[k(x)] = \frac{\sqrt{V_C[k(x)]}}{E_C[k(x)]}$$

• whole population:
$$c_N[k] = \frac{\sqrt{V_N[k]}}{E_N[k]}$$

Wealth inequality within cohorts

Figure 4: Impact of changes in life expectancy (LE) and fertility (TFR) on financial wealth inequality at selected ages

• \uparrow age $\Rightarrow \downarrow$ inequality & \downarrow TFR $\Rightarrow \uparrow$ inequality

Figure 4: Impact of changes in life expectancy (LE) and fertility (TFR) on financial wealth inequality at selected ages

• \uparrow age $\Rightarrow \downarrow$ inequality & $\downarrow LE \Rightarrow \uparrow \downarrow$ inequality

(a) Mean-age of the population

Figure 5: Impact of changes in life expectancy (LE) and fertility (TFR) on financial wealth inequality

Figure 5: Impact of changes in life expectancy (LE) and fertility (TFR) on financial wealth inequality

- A decline in fertility raises wealth inequality within cohorts but it reduces inequality at the population level (across cohorts)
- Increases in life expectancy result in a non-monotonic effect on wealth inequality by age and across cohorts

Thank you!

This project has received funding from the European Union's Seventh Framework Program for research, technological development and demonstration under grant agreement no. 613247: "Ageing Europe: An application of National Transfer Accounts (NTA) for explaining and projecting trends in public finances".

• The consumption path *c* that maximizes the expected utility (4) subject to the constraint (1) is the one that solves the Hamiltonian

$$\mathcal{H}(k,c,\lambda,x) = \tilde{S}U(c/h) + \alpha\mu\tilde{S}U(\eta k) + \lambda\left([r+\theta\mu]k + B + y - c\right),$$
(5)

where

- λ is the adjoint variable related to k,
- \tilde{S} denotes the probability of survival conditional on being alive at age A.

• The consumption path *c* that maximizes the expected utility (4) subject to the constraint (1) is the one that solves the Hamiltonian

$$\mathcal{H}(k,c,\lambda,x) = \tilde{S}U(c/h) + \alpha\mu\tilde{S}U(\eta k) + \lambda\left([r+\theta\mu]k + B + y - c\right),$$
 (5)

where

- λ is the adjoint variable related to k,
- \tilde{S} denotes the probability of survival conditional on being alive at age A.
- We obtain the following first order condition (FOC)

$$\mathcal{H}_{c} = \tilde{S}[h]^{-1}U'(c/h) - \lambda \stackrel{!}{=} 0.$$
(6)

• The consumption path *c* that maximizes the expected utility (4) subject to the constraint (1) is the one that solves the Hamiltonian

$$\mathcal{H}(k,c,\lambda,x) = \tilde{S}U(c/h) + \alpha\mu\tilde{S}U(\eta k) + \lambda\left([r+\theta\mu]k + B + y - c\right),$$
 (5)

where

- λ is the adjoint variable related to k,
- $ilde{S}$ denotes the probability of survival conditional on being alive at age A.
- We obtain the following first order condition (FOC)

$$\mathcal{H}_{c} = \tilde{S}[h]^{-1}U'(c/h) - \lambda \stackrel{!}{=} 0.$$
(6)

• Assuming $U(c) = \log(c)$ the dynamics of the adjoint variable and wealth are given by

$$\frac{\partial \lambda}{\partial x} = -[r + \theta \mu]\lambda - \alpha \mu \tilde{S}/k, \tag{7}$$

$$\frac{\partial k}{\partial x} = [r + \theta \mu]k + B + y - \tilde{S}/\lambda, \tag{8}$$

and the boundary conditions $k(0, \tau, l) = 0$ and $k(\omega, \tau, l) = 0$. (figure)

Each household head, whose father is *I* years older (*generational gap*), maximizes

$$\max_{c,k} \int_{A}^{\omega} \frac{S(x)}{S(A)} \left\{ U\left(\frac{c(x,l)}{h(x)}\right) + \alpha \mu(x) U\left(\eta(x)k(x,l)\right) \right\} dx.$$
(9)

where

Α	first age at making decisions
ω	maximum longevity
c(x, l)	household consumption
k(x, l)	financial wealth

Demographic relations

Number of children within the cohort (n)

Figure 6: Fraction of annuitized wealth (θ) and fraction of wealth received according to the number of children within the cohort (η) back

• Lifetime budget constraint

An individual whose parent is I years older is

$$\int_{A}^{\omega} e^{-rx} S(x) c(x, l) dx = \int_{A}^{\omega} e^{-rx} S(x) y(x) dx + T_{B}(0, l),$$
(10)

where $T_B(0, I)$ is the *bequest wealth* at birth

$$T_B(0, l) = \underbrace{\int_0^{\omega} e^{-rx} S(x) B(x, l) dx}_{\text{Bequest received}} - \underbrace{\int_0^{\omega} e^{-rx} S(x) \mu(x) [1 - \theta(x)] k(x, l) dx}_{\text{Bequest given}}.$$
 (11)

back

• Lifetime budget constraint

An individual whose parent is I years older is

$$\int_{A}^{\omega} e^{-rx} S(x) c(x, l) dx = \int_{A}^{\omega} e^{-rx} S(x) y(x) dx + T_{B}(0, l),$$
(10)

where $T_B(0, I)$ is the *bequest wealth* at birth

$$T_B(0, l) = \underbrace{\int_0^{\omega} e^{-rx} S(x) B(x, l) dx}_{\text{Bequest received}} - \underbrace{\int_0^{\omega} e^{-rx} S(x) \mu(x) [1 - \theta(x)] k(x, l) dx}_{\text{Bequest given}}.$$
 (11)

• Economic model:

Small-open economy, Yaari(1965)'s model with bequest motive

back

Family profiles

Figure 7: Family profiles

